Lockean Thesis and Non-Probababilism

Christian J. Feldbacher-Escamilla

Summer 2017

Project Information

Talk(s):

- Feldbacher-Escamilla, Christian J. (2017-06-20/2017-06-23). Lockean Thesis and NonProbabilism. Conference. Presentation (contributed). International Conference of the Italian Society for Logic and Philosophy of Science (SILFS). University of Bologna: SILFS.

Belief in All Its Varieties

Rational belief, a core notion of epistemology, comes in different forms:

- Qualitative: belief simpliciter
(Hintikka 1962)
- Comparative: ranked belief (Spohn 2012)

$$
\kappa(p) \leq \kappa(q)
$$

- Quantitative: degrees of belief (Ramsey 1926/1950)

As generally studied in measure theory, there are several connections. E.g.

- $\kappa(p) \leq \kappa(q)$ iff $\operatorname{Pr}(p) \leq \operatorname{Pr}(q)$

We are interested in the relation between $B e l$ and Pr via a threshold rule:

- $\operatorname{Bel}(p)$ iff $\operatorname{Pr}(p) \geq r$

As is well known, such a rule comes with several paradoxes.

Contents

(1) The Lottery Paradox
(2) Classical Approaches
(3) A Non-Probabilistic Approach

The Lottery Paradox

The Paradox

Consider a fair lottery with 1.000 tickets:

- $\operatorname{Pr}\left(t_{1}=t_{l}\right)=\cdots=\operatorname{Pr}\left(t_{1,000}=t_{l}\right)=\frac{999}{1.000}=0.999$
- $\operatorname{Pr}\left(t_{1}=t_{l} \& \cdots \& t_{1,000}=t_{l}\right)=0.0$

By the threshold rule, i.e. the so-called Lockean Thesis:

- $\operatorname{Bel}(p)$ iff $\operatorname{Pr}(p) \geq r$

One gets for reasonable r :

- $\operatorname{Bel}\left(t_{1}=t_{l}\right) \& \cdots \& \operatorname{Be}\left(t_{1,000}=t_{l}\right)$
- $\neg \operatorname{Bel}\left(t_{1}=t_{l} \& \cdots \& t_{1,000}=t_{l}\right)$

Which runs against the rationality of Bel.

Principles of Belief Simpliciter

B1 Consistency
B2 Single Premiss Closure
B3 Conjunctive Closure/Conjunctivism
$\operatorname{Bel}(T)$ and $\neg \operatorname{Bel}(\perp)$
$\operatorname{Bel}(p), p \vdash q \Rightarrow \operatorname{Bel}(q)$
$\operatorname{Bel}(p), \operatorname{Bel}(q) \Rightarrow \operatorname{Bel}(p \& q)$

Principles of Degrees of Belief

P1 Non-Negativity
P2 Normalisation
P3 Finite Additivity
$\operatorname{Pr}(p) \geq 0.0$
$\operatorname{Pr}(T)=1.0$
$p\rangle q \Rightarrow \operatorname{Pr}(p \vee q)=\operatorname{Pr}(p)+\operatorname{Pr}(q)$

The Bridging Principle

$\exists r:$
L1 Leibniz Condition

$$
r>0.5
$$

L2 Fallibilism

$$
r<1.0
$$

$\forall p$:
L3 Threshold Rule

Note the order of the quantifiers.
Also, more generally: $\forall B e l, \operatorname{Pr} \exists r \forall p$
And not, e.g. $\quad \exists r \forall B e l, \operatorname{Pr} \forall p$

The Lottery Generator

The relevant part of the structure of the lottery is captured via:
(0)

$$
\begin{array}{lr}
\forall r: & \\
\text { O1 Leibniz Condition } & r>0.5 \\
\text { O2 Fallibilism } & r<1.0 \\
\quad \exists p, q: & \\
\text { O3 Structural Richness } & \operatorname{Pr}(p) \geq r, \operatorname{Pr}(q) \geq r, \operatorname{Pr}(p \& q)<r
\end{array}
$$

The idea is that for any threshold r a lottery case can be devised.

The Paradox Again

Henry Kyburg (Jr.) showed (cf. Kyburg (Jr.) 1961):

$$
\text { (B) \& P \& (L) \& } \bigcirc \vdash
$$

- $\operatorname{Pr}(p) \geq r, \operatorname{Pr}(q) \geq r, \operatorname{Pr}(p \& q)<r$
- Pr satisfies the laws of degrees of belief
- $\operatorname{Bel}(p), \operatorname{Bel}(q), \neg \operatorname{Bel}(p \& q)$
- Bel does not satisfy the laws of belief simpliciter
(by ©)
(by P)
(by (L))
(by B)

Classical Approaches

Revise Belief Simpliciter

Richard C. Jeffrey opts for this position with his suggestion to eliminate the qualitative notion of rational belief completely from the epistemic realm (cf. Jeffrey 2004). This is vs. B1-B3 altogether.

Kyburg (Jr.) opted for this position, because he thought the importance of (L) outweighs that of (B). For a critical discussion (cf. Schick 1963). For (B) he distinguished different levels of rational inheritance and rational inference. The main idea is that $p \& q$ is on a different inference level as p and q are. This runs against conjunctivism, B3.

It seems plausible to assume that also paraconsistent logic is in this line of argumentation. From a dialethic point of view to belief in \perp on the one side and to restrict inferences (non-explosion) on the other side seems to make sense. This is against $\mathrm{B} 1, \mathrm{~B} 2$.

A Case for Conjunctive Closure: The Review Paradox

The most conservative revision of (B) seems to be revising B3, conjunctivism.

However, such a revision also causes paradoxes. E.g. The Review Paradox:

Given:

- Lockean Bridging
- Bayesian Update Given evidence p appears, then $\operatorname{Pr}_{t^{\prime}}(q)=\operatorname{Pr}_{t}(q \mid p)$
- Vacuous Belief Update If $\operatorname{Bel}_{t}(p)$, evidence p, then $\operatorname{Bel}_{t^{\prime}}(q)$ iff $\operatorname{Bel}_{t}(q)$
- Hence: Conjunctivism, i.e. B3.
(cf. Leitgeb 2014a)

A Case for Conjunctive Closure: The Review Paradox

To illustrate this, consider:

- Author $\operatorname{Bel}_{t}(p), \operatorname{Bel}_{t}(q), \neg \operatorname{Bel}_{t}(p \& q)$
- Reviewer provides evidence p

Then:
(1) $\operatorname{Pr}_{t^{\prime}}(q)=\operatorname{Pr}_{t}(q \mid p)=\frac{\operatorname{Pr}_{t}(p \& q)}{\operatorname{Pr}_{t}(p)} \quad$ (by Bayesian Update)
(2) $\operatorname{Pr}_{t^{\prime}}(p \& q)=P r_{t}(p \& q \mid p)=\frac{P r_{t}(p \& q)}{P r_{t}(p)}$
(by Bayesian Update)
(3) Hence: $\operatorname{Pr}_{t^{\prime}}(q)=P r_{t^{\prime}}(p \& q)$
(4) $\operatorname{Bel}_{t^{\prime}}(p), \operatorname{Be}_{t^{\prime}}(q), \neg B e l_{t^{\prime}}(p \& q)$
(5) $B e l_{t^{\prime}}(q)$ iff $B e l_{t^{\prime}}(p \& q)$
(by Vacuous Belief Update)
(6) Hence ?

So, an author cannot take in/update on evidence provided by a reviewer.

Revise Bridging

There are several ways of revising bridging:

- Apply no threshold rule (especially vs. L3).

Problem: Standard procedure to move on from quantitative to qualitative notions.

- Give up the Leibniz condition-vs. L1.

Problem: May result in inconsistent belief: $\operatorname{Pr}(p) \geq r, \operatorname{Pr}(\neg p) \geq r$ and by this $\operatorname{Bel}(\perp)$
Note that this is not necessarily the case. E.g. (Lin and Kelly 2012).

- Give up Fallibilism—vs. L2.

Problem: We might believe p, although $\operatorname{Pr}(p)<1$.
Prominently held by (Levi 1980).

Revise the Generator

Denying Structural Richness means to restrict possible Prs.

Note that this does not imply that Prs are restricted independently of the other constraints of rationality.

A very interesting case in point is The Stability Theory of Belief put forward by Hannes Leitgeb.

The Stability Theory of Belief

A stability condition:
(S) $\forall p, q: \operatorname{Bel}(p), q \not a p \Rightarrow \operatorname{Pr}(p \mid q)>0.5$

It can be shown:

$$
\text { (B) \& } P \vdash(\mathrm{~L}) \text { iff }(S
$$

Here r in (L) equals $\operatorname{Pr}(p)$, where p is the strongest proposition such that $\operatorname{Bel}(p)$.

Solution: The stability condition restricts Pr depending on Bel.
(O) is invalidated since such believes are not stable.

Problem: Partition-dependence of possible $r s \Rightarrow$ "Contextualism"

A Non-Probabilistic Approach

Revise Degrees of Belief

(B) \& (L) $\vdash \neg(P)(\& \neg)$
(NB: (B), (L), and (O) are already inconsistent.)

In general, things are quite open: A stability approach would serve probabilism.

Whether stability is the only way to uphold probabilism given (B) and (L) is an open question.

Revise Degrees of Belief

Given the more general approach:
$\forall B e l$, Pr, r: If (B) and (L) are satisfied for r, then \ldots
... one ends up with a fuzzy logic:

- $\operatorname{Pr}(\neg p)=\operatorname{Pr}(T)-\operatorname{Pr}(p)$
- $\operatorname{Pr}(p \& q)=\min (\operatorname{Pr}(p), \operatorname{Pr}(q))$
- $\operatorname{Pr}(p \vee q)=\max (\operatorname{Pr}(p), \operatorname{Pr}(q))$

Problem:

Does this enforce a complete different semantic/ontology for lottery cases: Is $t_{i}=t_{/}$not a true/false expression, but vague?
Are there other plausible interpretations, given the structure of fuzzy logic?

Summary

- The Lottery Paradox shows some incompatibility between rationality constraints for Bel, Pr, and Lockean bridging.
- Revision of the constraints for Bel leads to unattractive views like dialethism or impossibilities as shown by the review paradox.
- Revision of Lockean bridging is measure theoretically unorthodox.
- A restriction of Pr by stability constraints leads to (a weak form of) contextualism.
- Revision of Pr leads to fuzzyness whose interpretation for the lottery cases seems unintuitive.

References I

Hintikka, Jaakko (1962). Knowledge and Belief. An Introduction to the Logic of the Two Notions. Ithaca: Cornell University Press.
Jeffrey, Richard C. (2004). Subjective Probability: The Real Thing. Cambridge: Cambridge University Press.
Kyburg (Jr.), Henry (1961). Probability and the Logic of Rational Belief. Middletown: Wesleyan University Press.
Leitgeb, Hannes (2014a). "The Review Paradox: On The Diachronic Costs of Not Closing Rational Belief Under Conjunction". In: Noûs 48.4, pp. 781-793. Doi: 10.1111/nous. 12020.

- (2014b). "The Stability Theory of Belief". In: Philosophical Review 123.2, pp. 131-171. DoI: 10.1215/00318108-2400575.

Levi, Isaac (1980). The Enterprise of Knowledge: an Essay on Knowledge, Credal Probability, and Chance. Massachusetts: MIT Press.
Lin, Hanti and Kelly, Kevin T. (2012). "A Geo-Logical Solution to the Lottery Paradox, with applications to conditional logic". In: Synthese 186.2, pp. 531-575. DOI: 10.1007/s11229-011-9998-1.
Ramsey, Frank P. (1926/1950). "Truth and Probability". In: The Foundations of Mathematics. And other Logical Essays. Ed. by Braithwaite, R. B. With a Preface by G.E. Moore. London: Routledge \& Kegan Paul LTD, pp. 156-198.
Schick, Frederic (1963). "Consistency and Rationality". In: The Journal of Philosophy 60.1, pp. 519. URL: http://www.jstor.org/stable/2023058.

References II

Spohn, Wolfgang (2012). The Laws of Belief: Ranking Theory and its Philosophical Applications.
Oxford: Oxford University Press.

